
Compiling Planning into Scheduling: A Sketch

Tania Bedrax-Weiss∗ and James M. Crawford and David E. Smith
Computational Sciences Division

NASA Ames Research Center
Mailstop 269-4

Moffett Field, CA 94035-1000
{tania,jc,de2smith}@email.arc.nasa.gov

Abstract

Although there are many approaches for compiling a
planning problem into a static CSP or a scheduling
problem, current approaches essentially preserve the
structure of the planning problem in the encoding. In
this paper we present a fundamentally different encod-
ing that more accurately resembles a scheduling prob-
lem. We sketch the approach and argue, based on an ex-
ample, that it is possible to automate the generation of
such an encoding for problems with certain properties
and thus produce a compiler of planning into schedul-
ing problems. Furthermore we argue that many NASA
problems exhibit these properties and that such a com-
piler would provide benefits to both theory and practice.

Introduction
Despite significant advances in both the performance and
representation capabilities of recent AI planning systems
there is still a large gap between the size and complexity of
problems that can be handled by planning systems and those
that can be handled by scheduling systems. Take for exam-
ple, the Earth-Observing Satellites domain where the objec-
tive is to plan for a collection of observation requests that
must be fulfilled by available satellites. In the 3rd Planning
Competition (Long & Fox 2003), planners were able to gen-
erate plans for 100 observations and a handful of satellites
on a simplified version of this domain. Others (Dunganet
al. 2002; Morriset al. 2003) have been able to do somewhat
better on the full domain using a search strategy tailored for
this domain. In contrast, Globus et al. (2002; 2004) have
reported the ability to solve problems involving 6,000 ob-
servations (and 100 satellites) in a few seconds by encoding
the problem as a scheduling problem using a CSP.

This suggests that, wherever possible, we should reduce
planning problems to scheduling problems and solve them
that way. Synthesizing the problems by hand, however, may
pose many challenges. For one thing, a good scheduling en-
coding of a problem is difficult to obtain, and may not be
very natural or obvious. Furthermore, a scheduling encod-
ing can be quite sensitive to minor changes in the nature of
the problem, whereas the planning encoding might be more

∗QSS Group, Inc.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

natural, and easier to adapt to changing domain or problem
characteristics.

What we would like then, is to be able to recognize when
all or part of a planning problem can be reduced to a schedul-
ing problem, and automatically synthesize a static CSP rep-
resentation of that scheduling problem. In this paper, we de-
scribe an approach for automatically compiling a planning
problem into a static CSP under the following conditions:
(1) the problem must have many weakly interacting goals or
sub-goals; (2) each goal can be achieved in reasonably small
number of ways; (3) positive interactions among sub-goals
must be rare; (4) goals must be non-cyclic; that is, a sub-
goal tree for a goal must not contain the goal itself. One
problem domain that satisfies these conditions is the prob-
lem of scheduling Earth-Observing Satellites (EOS).

The static CSP formulation of the EOS domain has: 1.
a predicate that represents a candidate plan for satisfying
a sub-goal independently of other subgoals; 2. a disjunc-
tive constraint over these predicates representing the choice
of candidate plans for a sub-goal; and 3. mutual exclusion
constraints among the predicates, indicating which combi-
nations of plans are incompatible. Thus, a solution to the
problem is found when a candidate plan is chosen for each
subgoal such that the mutual exclusion constraints are all
satisfied.

This formulation of the problem resembles a scheduling
problem in that the candidate plans are are to be scheduled
according to the mutual exclusion constraints. In contrast to
other planning encodings there is no variable or constraint
specifically denoting causality between actions and fluents.
In fact, there are no variables that correspond directly to
actions or fluents (except for resources which can be seen
as a special case of fluents but are common in scheduling
problems). By abstracting away the planning nature of the
problem and making scheduling decisions explicit we be-
lieve that we can take advantage of scheduling technology
to solve this problem directly. Other approaches would have
unnecessary variables describing the causality of the plan-
ning problem. These extra variables and constraints may
make it harder to guide a search engine to focus on what is
important.

We generate multiple candidate solutions for each sub-
goal by building lifted plan graphs. A lifted plan graph is
like a plan graph (Kautz & Selman 1998) except initial and

goal conditions are lifted and actions remain lifted as they’re
added to the plan graph. The result is a set of candidate plans
and constraints that specify when each plan satisfies the sub-
goal. Mutual exclusion constraints are derived from analyz-
ing all possible ways that plans can interfere with each other.
We assume a PDDL 2.1 semantics (Fox & Long 2003) for
durative actions. Assuming that it is possible to generate all
possible ways of satisfying each goal and that it is possi-
ble to identify all possible ways in which each sub-plan can
interact with another, then this approach can be used to gen-
erate an optimal solution in terms of plan length (or in the
case of EOS, in terms of slew time).

Earth-Observing Satellites
Consider the problem of scheduling Earth-Observing Satel-
lites (EOS). Briefly, the EOS problem is to plan a set of im-
age requests such that the number and quality of satisfied re-
quests is maximized and the slewing time is minimized (slew
time is the time spent panning the camera from the position
required for one image to the position for the next image).
Each image is stored onboard the satellite in the Solid State
Recorder (SSR) until it is downlinked to the ground.

The EOS problem can be formulated as a planning prob-
lem in a straightforward way. Each image requested by the
scientists is a goal (more precisely, having the image data
in the computer on the ground is a goal). This goal breaks
down into sub-goals of slewing the camera to point to the
correct spot on the ground, warming up the camera, taking
the image, and then downlinking the image to the ground
(depending on the level of support from the lower level con-
trol architecture these steps may require further sub-goaling
but we can ignore this for purposes of this example). Each
of these sub-goals is constrained in various ways (e.g., slew-
ing takes some period of time, the camera can only point
some number of degrees across or along the satellites track,
etc.) and various sub-goals consume resources (e.g., power
for the slew, and SSR capacity from the time the image is
taken to the time of the downlink).

Existing Planning Encodings
This planning problem can be translated to a SAT prob-
lem or more generally a static CSP problem (which can be
fully ground into SAT) using a variety of techniques from
the literature (Bedrax-Weiss, Jónsson, & Ginsberg 1996;
Kautz & Selman 1998; Do & Kambhampati 2000; Mali &
Kambhampati 1998). The key insight on which most of
these approaches are based is that because both SAT and
bounded-length STRIPS-style planning are NP-complete,
polynomial reductions between the problems exist. We as-
sume that an optimal solution in terms of number and quality
of satisfied requests can be obtained by imposing and sub-
sequently changing the bounds. The slew time, however is
determined by the order of the observations so that is com-
puted based on the solution to the SAT formulation.

The details in each approach to planning as SAT differ
but the essential idea is to create a variable for the fully
ground operation to be performed at each time step. Vari-
ables are also created for fluents including SSR levels. Fi-

nally, constraints are added to ensure that preconditions,
post-conditions, and resource constraints are met. For sim-
plicity we only present fragments of encodings in the litera-
ture.

A state based encoding of EOS using explanation-based
axioms (Haas 1987) would have constraints of the form:

Pointing (1,t+1)↔ Pointing(1,t)∨ Slew(2,1,t)∨ ...
ImgTaken(1,t+1)↔ ImgTaken(1,t)∨ TakeImg(1,t)
ConsumeSSR(1,t)↔ TakeImg(1,t)
¬ TakeImg(1,t)∨ ¬ Slew(1,2,t)
...

where t is instantiated for each allowed value for time. Note
that in this encoding, Slew, TakeImg, and ConsumeSSR are
instantaneous actions. In fact, we are not aware of any en-
codings that encode actions with durations. Durations are
essential when dealing with resources because it is otherwise
awkward and sometimes impossible to precisely model the
state of a resource (Bedrax-Weiss, McGann, & Ramakrish-
nan 2003; Smith 2003). For simplicity we have chosen to
model ConsumeSSR as consuming the entire storage rather
than modeling the consumption pattern, which would in-
troduce extra predicates and mutual exclusions of the form
“only X of the N possible consumption predicates must be
true at any one time”. Note also that the causality between
preconditions and effects of Slew and TakeImg is preserved
by the constraints, and that there are variables for each pos-
sible effect, precondition and action at each possible time.

There are other encodings that do away with time al-
together. A partial order or causal encoding (Kautz,
McAllester, & Selman 1996) based on (McAllester &
Rosenblitt 1991) encodes the set of actions that can be per-
formed at each step in the plan. A step corresponds to the
time in which the action associated to that step is executed.
Two different steps can be assigned the same action if the ac-
tion is to be performed at two different times. Step ordering
assertions come from prerequisites and causal links. Prereq-
uisites are given by preconditions that need to be satisfied.
Causal links are given by requiring that if a step precedes
another step that there be no step between them that either
adds or deletes a condition that is protected by the causal
link.

A causal encoding of EOS would have constraints of the
form:

Action(o1,TakeImg(1))∨ Action(o1,Slew(1,2))∨ ...
¬ Action(o1,TakeImg(1))∨ ¬ Action(o1,Slew(1,2))
Action(o1,TakeImg(1))→ Needs(o1,Pointing(1))
Action(o2,Slew(1,2))→ Dels(o2,Pointing(1))
Action(o3,Slew(3,1))→ Adds(o3,Pointing(1))
Action(o3,Slew(3,1))< Action(o1,TakeImg(1))∧

Dels(o2, Pointing(1))→ o1< o2∨ o2< o3 ...

where o1, o2, and o3 are step names and the predicate Ac-
tion(o1,Slew(2,1)) reflects the decision to add an action to
slew from 2 to 1 to the plan. Furthermore, it adds constraints
for every causal link and ordering constraints between the
operators. Both of these translations create SAT encodings
where the essential “planning” structure of pre-conditions,
post-conditions, and causality are preserved. In fact, other
encodings we are aware of such as the HTN encoding (Mali

& Kambhampati 1998) also preserve the planning structure.
The HTN encoding contains constraints for task decomposi-
tion in addition to the classic constraints for achieving goals.

A Proposed Encoding
A key observation about EOS scheduling is that there are rel-
atively few time “windows” at which images can be taken.
This is because the cameras can only slew a relatively small
number of degrees, and the number of times the satellite
passes a given point within a scheduling period is relatively
small. Furthermore, for each image request there is a small
set of satellites and instruments that can possibly fulfill it.
The nature of the problem is such that the key issue is assign-
ing image acquisition actions to windows of opportunity.

Storage and power consumption for each individual sub-
goal depend only on the target that the satellite is currently
pointing to and the sub-goal target. Thus, it is possible to
associate these costs to each plan for each sub-goal. Fur-
thermore, the cost need not be reflected on the encoding. It
can be naturally dealt with in a scheduling/CSP framework.

We choose to work in the CSP setting instead of in the
fully ground SAT setting for reasons that we will describe
later. The EOS problem can be formulated as a static CSP
as follows. For each goal, create a disjunctive list of all
possible plans satisfying the goal in isolation of other goals.
Then, introduce mutual exclusion relations between pairs of
incompatible plans. Ensure observations can only happen
within opportunity windows. We assume s, s1, and s2 are
variables of type satellite, and x, x1, x2, and y are variables
of type observation target.

The constraint that is imposed by the observation win-
dows is:

start(Observed(s,x))≥ start(OppWindow(s,x))∧
end(Observed(s,x))≤ end(OppWindow(s,x))

where Observed(s,x) denotes that satellite s observed target
x and start(Observed(s,x)) is a function that represents the
start time of Observed(s,x). This constraint is augmented
if there is more than a single opportunity window for each
observation. Similarly if there’s more than one instrument
that can perform the observation there will be constraints
reflecting the possible choices.

An observation must be satisfied through one of the pos-
sible means of achieving it.

Observed(s,x)→ Observe1(s,x)∨ Observe2(s,y,x)

where Observe1(s,x) and Observe2(s,y,x) represent all pos-
sible means of achieving Observe(s,x).

Observe1(s,x)↔ Pointing(s,x)∧ TakeImg(s,x)∧
start(Pointing(s,x))≤ start(TakeImg(s,x))∧
end(Pointing(s,x))≥ end(TakeImg(s,x))∧
start(Observe1(s,x)) = start(TakeImg(s,x))∧
end(Observe1(s,x)) = end(TakeImg(s,x))

Observe1(s,x) happens if and only if the satellite is pointing
at the target, the satellite takes an image, and the duration
of the Observe1(s,x) action is the same as the TakeImg(s,x)
action. This is true if and only if the satellite is already point-
ing at the target observation. Otherwise, a second constraint
holds:

Observe2(s,y,x)↔ Pointing(s,y)∧ y 6= x ∧
Slew(s,y,x)∧ TakeImg(s,x)∧
end(Pointing(s,y)) = start(Slew(s,y,x))∧
start(Pointing(s,x))≤ start(TakeImg(s,x))∧
end(Pointing(s,x))≥ end(TakeImg(s,x))∧
end(Slew(s,y,x))< start(TakeImg(s,x))∧
start(Observe2(s,y,x)) = start(Slew(s,y,x))∧
end(Observe2(s,y,x)) = end(TakeImg(s,x))

where it requires that s be pointing at y, that y be differ-
ent from x, that Slew(s,y,x) happen and that TakeImg(s,x)
happen such that the Slew(s,y,x) happens before the
TakeImg(s,x) and the duration of the Observe2(s,y,x) is the
same as the duration of the Slew(s,y,x) and TakeImg(s,x)
combined.

Finally, we include the mutual exclusion constraints that
apply for any pair of observations that say that if two images
are to be taken by the same satellite within a specific period
of time there should be enough time to slew between them.

Observed(s1,x1)∧ Observed(s2,x2)→ s1 6= s2∨
(s1 = s2∧ x1 = x2)∨
(s1 = s2∧ x1 6= x2∧
(end(Observed(s1,x1))≤ start(Observed(s2,x2))
∨ start(Observed(s1,x1))≥ end(Observed(s2,x2)))

where if two observations happen then either they happen on
different satellites or they are the same observation by the
same satellite or the same satellite makes both observations
but the observations don’t overlap.

This constraint is possibly the most interesting and most
complicated constraint in this example. Intuitively it is pos-
sible to derive the temporal constraint that allows for slew-
ing between two consecutive tasks. This constraint is de-
rived from the fact that slewing interferes with taking an
image and vice-versa and the fact that two slewing actions
interfere with each other. In the following section we show
how. Note that once we have derived this constraint, we can
do away with the variables for Slew(s,y,x) and Pointing(s,x)
and the encoding is reduced to the Observe1(s,x) and Ob-
serve2(s,y,x) and the disjunctive constraint and this mutual
exclusion constraint.

Compilation
For simplicity, we’ll focus only on the predicates of inter-
est: Pointing(s,x) and Vibrating(s) that are used to describe
where a satellite is pointing and that a satellite vibrates
during slew. A typical initial state will consist of (among
other things) descriptions of where each particular satellite
is pointing. A typical goal state will consist of descriptions
of specific targets that should be observed. Given that the
initial state contains Pointing(s,x) for a particular s,x it is
possible to identify three cases: (1) the goal state includes
Observed(s,x) for the same s,x; (2) the goal state includes
Observed(s,y) where y6= x; (3) there is no Observed(s,x)
goal for that satellite. However, only (1) and (2) are of con-
cern since they determine the cases that we need to consider
when finding plans for individual goals. While this analy-
sis may seem straight-forward, deriving this automatically
may be difficult. However, we will show that it is possible
to make use of a lifted plan graph in order to derive these

constraints. As we will see a lifted plan graph is necessary
for infering binding constraints that are used to deduce when
all candidate plans have been obtained.

For simplicity of exposition, we make the following as-
sumptions: (1) each satellite has a single instrument that can
be used to observe a target, thus allowing us to abstract out
the instrument; (2) opportunities for taking an image can
be computed and compiled by limiting the possible times
at which a satellite may be pointing to an image; (3) an ini-
tial description of the problem and initial state is given in
PDDL 2.1. We further assume that resources can be ex-
pressed in the language natively (see Bedrax-Weiss, Mc-
Gann, & Ramakrishnan 2003 for examples) and dealt with
separately. We also assume that the availability of targets is
modeled as exogenous events (see Edelkamp & Hoffmann
2004 for examples). Exogenous events are events that the
planner has no control over and are similar to availability
dates in scheduling. Following these assumptions, a simpli-
fied PDDL 2.1 description for the EOS domain would in-
clude:

(:durative-action Slew
:parameters (?s - satellite

?x - observation
?y - observation)

:duration (= ?duration
(/ (DistanceBetween ?x ?y)

(SlewRate ?s)))
:condition (and (at start (Pointing ?s ?x)))
:effect (and (at start (Vibrating ?s))

(at end (not (Vibrating ?s)))
(at start (not (Pointing ?s ?x)))
(at end (Pointing ?s ?y))

)
)

(:durative-action TakeImg
:parameters (?s - satellite

?x - observation
?w - window)

:duration (= ?duration (DurationOf ?o))
:condition (and (at start (TargetAvailable ?w))

(over all (TargetAvailable ?w))
(at start (Pointing ?s ?x))
(over all (Pointing ?s ?x))
(at end (Pointing ?s ?x))
(at start (not (Vibrating ?s)))
(over all (not (Vibrating ?s)))
(at end (not (Vibrating ?s)))

)
:effect (and (at end (Observed ?x)))

)

We begin by lifting the initial and goal conditions, keep-
ing the corresponding set of variable bindings for each con-
dition. For example given Pointing(sat1,tgt1) we abstract
out the constants and replace them with variables and the
corresponding binding constraint: Pointing(s,x) and{s =
sat1, x = tgt1}. We do the same for goals: Observed(tgt1)
turns into Observed(x) and{x = tgt1}.

A lifted plan graph is constructed for each observation
sub-goal by adding the lifted initial conditions to the graph.
The plan graph will contain lifted instances of actions and
propositions. An action will only be added if all conditions
are satisfied. We say that a condition is satisfied if a unifica-
tion constraint exists between the condition and a condition
already in the graph. We add all lifted actions such that:

1. Start conditions can be satisfied by lifted conditions in the
graph

2. Overall conditions can be satisfied either by lifted condi-
tions in the graph or by start effects of the lifted action.

3. End conditions can be satisfied by lifted conditions in the
graph or effects of the lifted action.

For each action, we derive the set of unification constraints
that would make that action applicable. For instance, if the
initial condition is Pointing(s1,x1) and an action TakeImg
has a start condition that says Pointing(s2,x2), the unifica-
tion constraints would be{s1 = s2, x1 = x2}. Furthermore, if
TakeImg has an effect Observe(x2) and there’s a goal condi-
tion Observe(t3), we derive the unification constraint{x2 =
x3}. Together, these unification constraints would imply that
{x1 = x3} which allows us to derive that if there is an initial
condition that states that a satellite is pointing to a target and
there is a goal condition that states that the target is to be ob-
served, then the TakeImg action satisfies that goal. Further-
more, we derive that if{x1 6= x3} then TakeImg alone does
not satisfy the goal and more work needs to be done to find
a plan. In this case, we continue expanding the plan graph
ignoring action durations and mutex propagations. Dura-
tions will come into play when we analyze the interactions
between the different plans for achieving the lifted goals.

Since in the case of observations there are only two possi-
ble plans for each sub-goal depending on whether the satel-
lite is already pointing at the target or whether it needs to
slew, we stop generating plan graphs when we have ex-
hausted both cases. In other domains there may be more
conditions that will arise from binding constraint analysis of
the initial and goal states. For this domain, though we final-
ize expansion with two “candidate plans”:

If x1 = x3 then TakeImg(s,x1)
Else Slew(s,x1,x3) then TakeImg(s,x3).

Once we have all alternative “candidate plans” for each
sub-goal, we form the disjunctive constraint that shows all of
the possible ways to achieve each individual goal. Next, we
derive lifted static mutual exclusion constraints as follows.

For each possible way of overlapping actions, we ana-
lyze all possible overlaps allowed by the PDDL 2.1 seman-
tics. Two actions may overlap if there are no contradic-
tions in the static analysis of the states. The static analysis
is done in a way similar to (Garrido, Fox, & Long 2002;
Garrido & Onand́ıa 2003). For instance, if two actions are
allowed to start together, then the start conditions of both
actions are simultaneously satisfied, the start effects of both
actions do not interfere, and the start effects of one action
do not interfere with the overall conditions of the other. We
need to find out whether given the two candidate plans found
above, can Slew and TakeImg overlap? Can TakeImg and

TakeImg overlap? We illustrate how the technique works by
analyzing whether Slew and TakeImg can start at the same
time.

In order to determine whether Slew and TakeImg can start
at the same time, we must determine that:

1. The start conditions of both actions are simultaneously
satisfied.

2. The start effects of both actions do not interfere.

3. The start effects of one action do not interfere with the
overall conditions of the other.

Interference in the lifted case is determined by the set of
binding constraints that would cause an inconsistency. This
is easy enough to determine because these binding con-
straints can be computed by intersecting variable domains.
There are two ways an inconsistency could be generated: (1)
when computing the binding constraints, the intersection of
the domains is empty; (2) one of the conditions is the nega-
tion of the other. In this latter case the binding constraints
determine the cases where there is interference. Let us ex-
amine the start and overall conditions and start effects of
both actions:

Slew(?s ?x1 ?x2)
:condition (and (at start (Pointing ?s ?x1)))
:effect (and (at start (Vibrating ?s)))

TakeImg(?s ?x)
:condition (and (at start (TargetAvailable ?w))

(over all (TargetAvailable ?w))
(at start (Pointing ?s ?x))
(over all (Pointing ?s ?x))
(at start (not (Vibrating ?s)))
(over all (not (Vibrating ?s)))

)

TakeImg doesn’t have any start effects so we only need to
worry about the start effect of the Slew action. Furthermore,
only the Vibrating start and overall condition of TakeImg
can produce interference since they appear negated in Slew.
Thus, of the three possibilities for interference namely, start
conditions interfering with each other, or start effects inter-
fering with each other or start effects interfering with start
conditions, only the third leads to interference. The start ef-
fect of Slew interferes in one way with the overall conditions
of TakeImg through the Vibrating predicate — Slew asserts
(Vibrating ?s) at the start and TakeImg requires the nega-
tion of it whenever the satellites are the same. We have just
learned one condition for interference: the satellites are the
same. If this condition is satisfied, Slew and TakeImg cannot
start at the same time. So the initial constraint is:

Slew(s1,x1,x2)∧ TakeImg(s2,x3)→ s1 6= s2∨
(s1 = s2∧
(start(Slew(s1,x1,x2))< start(TakeImg(s2,x3))∨
start(Slew(s1,x1,x2))> start(TakeImg(s2,x3))))

Now we know that they can’t start at the same time, but
can TakeImg start during Slew? One of the things we need
to determine is whether the start effects of Slew interfere
with the conditions of TakeImg. Slew has two start effects:
(Vibrating ?s) and (not (Pointing ?s ?x1)). TakeImg has the

following conditions: (not (Vibrating ?s)) and (Pointing ?s
?x), both of which interfere under the following conditions:
the satellites are the same and{x1 = x} (according to Point-
ing(...)). However, this constraint is subsumed by the con-
straint imposed by Vibrating(...) that says that the satellites
have to be different. So the following constraint we derive
is:

Slew(s1,x1,x2)∧ TakeImg(s2,x3)→ (s1 6= s2)∨
(s1 = s2∧ x1 = x3∧
(end(Slew(s1,x1,x2))< start(TakeImg(s2,x3))∧
(start(Slew(s1,x1,x2))> end(TakeImg(s2,x3))))

After analyzing all of the possible ways TakeImg and
Slew can overlap, we can derive conditions that when com-
bined with all other conditions that are derived, imply that
the sequence Slew,TakeImg cannot overlap the sequence of
TakeImg unless the satellites are different. The combination
of constraints is done by grouping implications and substi-
tuting terms for equivalent terms to yield a more compact
representation:

Observed(s1,x1)∧ Observed(s2,x2)→ s1 6= s2∨
(s1 = s2∧ x1 = x2)∨
(s1 = s2∧ x1 6= x2∧
(end(Observed(s1,x1))< start(Observed(s2,x2))
∨ start(Observed(s1,x1))> end(Observed(s2,x2)))

The same analysis can be used to determine whether the
windows of opportunity interfere with observations. That is
because windows of opportunity are modeled as exogenous
events. In their simplest way, an exogenous event can be
translated to an action with durations where the duration is
the time at which the event happens (a precondition and ef-
fect is created to ensure that the event cannot happen more
than once, if that is the desired result). Interference analysis
for these actions allows us to derive the constraint that says
that observations must happen within the window of oppor-
tunity.

Note that Slew and TakeImg are no longer involved in
any of the constraints. Slewing is only relevant in that it
influences the time at which tasks can be performed. There-
fore no explicit representation of these actions is needed.
Note that the encoding deals with temporal flexibility just
like scheduling deals with temporal flexibility in terms of
start time and end time for each task (Crawford 1996). If
we ignore resources, it is possible to see that the temporal
constraint is sufficient in order to find a solution to the prob-
lem. With respect to the resource consumption we postulate
that since the problem is being compiled into a scheduling
problem, resources can be handled directly in the scheduling
formulation. This encoding is based on the fact that deter-
mining the sequence and assignment of the different image
requests depends on an explicit representation of mutually
exclusive sets of decisions. For example, given an image
request, there is a set of mutually exclusive options for as-
signing the request to the satellite.

Advantages of Automated Compilation
There are several advantages to using automated compila-
tion. No known encoding methods can deal with complex

constraints, resources, and actions with durations. Since
we will be encoding the problem as a CSP that resembles
a scheduling problem, our encoding will deal naturally with
these features. In recent years, SAT planners have not been
competitive with other approaches to planning. In the 2000
competition, SAT planners ran out of memory because their
encodings were too large. In the 2002 competition, none
of the planners were SAT based (see results on planning
competitions published online at Long & Fox 2003 and
http://www.icaps-conference.org/). Furthermore, these en-
codings couldn’t deal well with metric time. Most encodings
had to encode explicit time choices as variables and because
they were being encoded as SAT would have one variable for
each action choice per time point. Even if these encodings
were sent to a constraint satisfaction engine that expanded
the domains lazily the encodings were not able to handle
durations, timed events, or resources. Because our encod-
ing looks like a scheduling problem, metric constraints and
resources can be dealt with naturally.

Our encoding more accurately represents the actual
choices that are made in the domain and therefore is more
able to successfully guide the search for plans. Our encod-
ing looks quite different from the planning encoding of the
same problem. There are no pre-conditions, post-conditions,
sub-goals, fluents (other than resources), etc. Rather, the
choice of which observation window to put each image re-
quest into looks much more like a scheduling problem. Fur-
thermore, arc-consistency, and other CSP and scheduling
propagation techniques, can be used to quickly compute the
consequences of a set of variable bindings. Because of the
strength of these propagation techniques, because of the re-
duction in the number of variables, and because the key op-
timization variables are ”obvious” to the search algorithm,
this CSP encoding we postulate that it allows much more
efficient search and optimization for EOS planning. In one
instance, a planning system took roughly an hour to solve an
EOS problem with 400 requests and an average domain size
(start times for the requests) of about 10. Tests done on an
encoding similar to the one we propose in this work show a
reduction in run time to about .2 seconds.

Some additional advantages of this versus other ap-
proaches are:

1. Our encoding makes the scheduling decisions explicit. It
provides more direct guidance to the constraint engine be-
cause we have chosen to abstract and learn a set of con-
straints that define the interactions among the different
means of achieving a sub-goal and then use these con-
straints rather than the planning structure to guide the con-
straint engine.

2. The lifted nature of the approach makes the encoding
more compact. Furthermore, it allows us to derive the
binding constraints that ultimately lead to the mutual ex-
clusion constraints between sub-plans.

3. Unnecessary variables describing the causality of the
planning problem also disappear in our encoding making
it more compact.

4. In other approaches resources would have to be captured
by creating n-way mutual exclusions for resources of ca-

pacity n (i.e., not more than n of i1=t1, i2=t2, i3=t3,...),
obscuring the description and creating unnecessary vari-
ables.

We postulate that this is not an isolated event — that there
is a broad class of problems that can be compiled into static
CSPs using non-trivial but still automated mapping.

Conditions for Automatic Compilation
For a planning problem to be compiled into a static CSP
using the proposed method it must meet the following tests:

1. It must have many weakly interacting goals or sub-goals.
For example, in EOS scheduling the image requests from
the scientists only interact in their use of shared resources
(cameras, SSR, etc.). In contrast, a set of blocks to be
stacked ABCDE represents a set of goals that interact with
each other in complex and subtle ways (e.g., putting D on
C prevents C from being moved).

2. Each goal can be achieved in a reasonably small number
of ways. For example, in EOS the number of observa-
tion windows for each image request is small. In contrast,
if a goal can be achieved in several ways, each of which
consists of sub-goals that can each be achieved in several
ways, then the total number of possible unique ways to
achieve a goal can become quite large. The proposed en-
coding will create a variable for each goal and a value for
each qualitatively unique way to achieve the goal (in iso-
lation). If goals can be achieved in many different ways
then the number of values can become prohibitive.

3. Structure sharing between the plans for different goals
must be minimal. This is an important variant of con-
dition 1. For example, in some planning problems it may
be the case that achieving goal A using plan fragment p1
makes it very easy to achieve goal B (since much of p1
can be shared by a plan fragment for B). This kind of pos-
itive interaction is difficult to capture in a general form in
the proposed framework (though some special cases, such
as sequence dependent setup, can be handled in the same
way as in scheduling problems).

4. Goals are non-cyclic. That is, the sub-goal tree for a goal
g must not contain g itself. Note that while such cycles
are rare in problems like EOS scheduling they are perva-
sive in more traditional planning problems (e.g., blocks
world). Some kinds of cycles can be broken by careful
manipulation of the planning encoding but others are fun-
damental to the planning domain.

If the goal network is non-cyclic we believe that it is al-
ways possible to push conditions to the sub-plan level rather
than retaining the details of how the plan is achieved. This
does not change the problem but it simplifies thinking about
it. In the satellite example, we saw that it is possible to push
conditions for slews, take images, etc. to the top level Ob-
serve action. Furthermore, we note that the SSR requirement
imposes a ”global” constraint on the way observations are
carried out. However, this global constraint can be captured
as a resource (whose capacity is refilled on downlink). The
lack of strong interaction makes this a feasible approach.

Discussion
There are many challenges in this proposed work. It may be
difficult to prove that the static CSP encapsulates all of the
constraints in the problem. If compilation is not possible for
certain domains, then automatically identifying a subset of
the problem with the required properties will also be a chal-
lenge. Furthermore, even if it was possible to automatically
identify the sub-problem, will solving the sub-problem sep-
arately help the planner’s overall performance? A similar
question arises in the case where it is possible to compile an
approximation to the original problem but not the problem
itself. In what follows, we provide some answers to these
questions.

One difficulty lies in formally proving that all qualita-
tively distinct sub-plans that could possibly achieve a given
sub-goal have been enumerated. (Though note that even in
the absence of such a proof the solution to the CSP could still
serve as a very strong heuristic1 in solving the full planning
problem). For example, for the EOS problem domain, the
obvious sub-plans are those that call for a single slew from
each target to the next target. There are, however, an infi-
nite number of distinct sub-plans that call numerous small
slews. To justify ignoring these variants we have to prove
that you’ll never be required to do anything but the shortest
path slew. A satellite might be required to break up the short-
est path slew if there was an obstruction along the path. For
example there may be obstructions such as a physical ob-
stacle on the satellite itself or an external object that would
damage the instrument if pointed at it, e.g. the Sun. Both
of these are flight safety rules that could interfere with the
shortest path slewing. However, both of them can be com-
piled because there is a limited set of circumstances under
which the obstruction occurs and those circumstances can
be determined at compile-time (we know where the Sun is).

The general challenge is in proving that all interesting
qualitatively distinct sub-plans have been included. Note,
however, that a human creating a CSP or scheduling encod-
ing is implicitly completing such proofs in their head. Also
note that failing to prove that we have enumerated all pos-
sible sub-plans impacts only the optimality of our approach
with respect to plan length (or slew time in our case) - not its
correctness. That is, all solutions to CSP(P) will be valid so-
lutions of P, but there is a possibility that there are additional
sub-plans for some sub-goals in P that would have yielded a
more optimal plan.

One final question to consider is the tradeoff between
compiling planning problems into CSPs vs. directly en-
coding the problem as a CSP. Clearly there is experience
in the CSP and scheduling community on directly encoding
problems of realistic size and complexity. Further, the di-
rect encoding has the advantage that the modeler can more
carefully control and optimize the choice of variables and
the representation of constraints. Also, the direct method
obviously makes the construction of an automatic compi-
lation system unnecessary. However, the use of a planning
encoding followed by automated compilation has several ad-

1The CSP solution will be mostly right so it could be queried
by a search engine in order to determine the next decision to make.

vantages: (1) In many cases the planning encoding is more
natural, and more accessible and intuitive for domain ex-
perts. In the case of rover ground operations, for exam-
ple, the Ames team building the planner for the MER rovers
has been able to largely automate the translation from the
”data dictionary” (which is actually expressed in a sub-goal
format) produced by the flight team to a planning encod-
ing. This would probably not be possible for a hand-built
CSP encoding. This makes the planning encoding easier to
both validate and to maintain. (2) An automated transla-
tion will identify any hidden goal interactions that might be
missed in a hand-built CSP encoding. In the hand encod-
ing the human modeler is implicitly computing all interac-
tions between the tasks and accounting for them by creating
constraints or adding resources. In the automated method
the human modeler specifies the sub-goal structure and the
preconditions and effects of each action. The compilation
procedure then identifies all possible interactions. (3) The
compilation mechanism provides a relatively low cost way
to generate heuristics that may help in solving the full plan-
ning problem (by first solving the CSP and then using that
solution as a guide in solving the full problem). Finally,
(4) the direct encoding is brittle in the sense that if a con-
straint changes slightly in the original problem it may force
substantial changes in the compiled problem. In particular, a
relatively modest change to the problem statement may have
complex and easily-missed effects on the task interactions.
For example, if one adds the flight rule that slewing one in-
strument platform will create vibrations in all other cameras
on the satellite, then a host of previously unrelated tasks will
become mutually incompatible. Note finally that the human
encoder must add constraints that capture each possible pair-
wise interaction between sub-goals and in some cases there
will be three-way or higher interactions. The difficulty of
doing this by hand will obviously increase quickly with do-
main complexity.

Related Work
One approach in HTN planning that we think may be appli-
cable here is Barrett’s (Barrett 1997) work which provides
a method to guarantee plan decompositions are frugal (e.g.
every action contributes positively; negative contribution is
minimized). This work may prove relevant when the num-
ber of ways of achieving individual goals grows large by
helping narrow down the set of sub-plans we will consider
in the encoding. Plan decompositions in HTN are reminis-
cent of the ”flattening” technique since they also explicitly
encode the choice of how to achieve an individual goal (Mali
& Kambhampati 1998).

Another relevant body of work is the Fox and Long (1998)
approach of building finite state machines describing the
evolution of conditions in the domain in order to recognize
patterns of evolution that arise in different domains and re-
formulate the portions of the domain that fit the pattern into
a problem that can be solved using domain specific tech-
niques. Their approach seems to break down when the fi-
nite state machine generated for a condition differs slightly
from a recognized pattern. For instance, when moving from
point A to point B involves stopping along the way and the

available state machine represents a direct movement from
point A to point B. Even though their approach is not gen-
erally applicable, we may be able to leverage some of the
lessons learned and apply them to our research in order to
perform domain analysis to determine if the problem ex-
hibits the characteristics required to automatically compile
it to a static CSP.

Becker and Smith (2000) describe an approach whereby
they generate plans for each individual sub-goal and then
concatenate them to form plans for the “mission”. Although
they do not generate all possible plans for each sub-goal they
do impose the constraint that there must be enough resources
to satisfy both plans whenever they combine any two plans.
We are not manually imposing this constraint, we are deriv-
ing it via mutual exclusion reasoning.

Automatically generating problem transformations is an-
other challenge. There have been other approaches to auto-
matically generating problem description transformations in
order to more efficiently solve the original problem.

Van Baalen (1992) uses a set of sentence schemas defining
common concepts from set theory (symmetry, reflexivity,
transitivity, etc.) to reformulate a problem given in predicate
calculus with the objective of maximizing the compression
of the reformulation. This approach, however, is only appli-
cable to problem instances of the same class, that is, where
the set of actual domains change but not the domain rules.
This approach is related to our approach because it provides
some means to learn in the lifted domain. We believe work-
ing in the lifted domain will allow us to explore the possibil-
ity of extending our approach to cases where there are many
scheduling choices.

Acknowledgements
Thanks to Al Globus for discussions on EOS. This research
was supported by NASA Ames Research Center and the
NASA Intelligent Systems program.

References
Barrett, A. C. 1997.Hierarchical Task Network Planning
Using Actions With Universally-Quantified Conditional Ef-
fects. Ph.D. Dissertation, University of Washington.

Becker, M. A., and Smith, S. F. 2000. Mixed-initiative
resource management: The amc barrel allocator. InAIPS.

Bedrax-Weiss, T.; J́onsson, A.; and Ginsberg, M. 1996.
Unsolved problems in planning as constraint satisfaction.
http://www.cirl.uoregon.edu/tania/htmlfiles/pubs.html.

Bedrax-Weiss, T.; McGann, C.; and Ramakrishnan, S.
2003. Formalizing resources for planning. InICAPS Work-
shop on PDDL.

Crawford, J. M. 1996. An approach to resource constrained
project scheduling. InWorkshop on AI and Manufacturing
Research Planning.

Do, M. B., and Kambhampati, S. 2000. Solving planning-
graph by compiling it into CSP. InAIPS.

Dungan, J.; Frank, J.; Jónsson, A.; Morris, R.; and Smith,
D. 2002. Advances in planning and scheduling of remote

sensing instruments for fleets of earth orbiting satellites. In
ESTC.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2:the lan-
guage for the classical part of the 4th international planning
competition. http://ipc.icaps-conference.org/.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in tim.Journal of AI Research9.
Fox, M., and Long, D. 2003. Pddl2.1: An extension of
pddl for expressing temporal planning domains.Journal of
Artificial Intelligence Research20.
Garrido, P., and Onandı́a, E. 2003. On the application of
least-commitment and heuristic search on temporal plan-
ning. In IJCAI.
Garrido, P.; Fox, M.; and Long, D. 2002. Temporal plan-
ning with PDDL2.1. InECAI.
Globus, A.; Crawford, J.; Lohn, J.; and Morris, R. 2002.
Scheduling earth observing fleets using evolutionary algo-
rithms: Problem description and approach. In3rd NASA
Planning and Scheduling Workshop.
Globus, A.; Crawford, J.; Lohn, J.; and Pryor, A. 2004. A
comparison of techniques for scheduling earth observing
satellites. InIAAI.
Haas, A. 1987. The case for domain-specific frame axioms.
In The Frame Problem in Artificial Intelligence Workshop.
Kautz, H., and Selman, B. 1998. Blackbox: A new ap-
proach to the application of theorem proving to problem
solving. InAIPS.
Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding
plans in propositional logic. InPrinciples of Knowledge
Representation and Reasoning.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis.Journal of Artifi-
cial Intelligence Research20.
Mali, A. D., and Kambhampati, S. 1998. Encoding HTN
planning in propositional logic. InAIPS.
McAllester, D., and Rosenblitt, D. 1991. Sistematic non-
linear planning. InAAAI.
Morris, R.; Dungan, J.; Frank, J.; Khatib, L.; and Smith, D.
2003. An integrated approach to earth science observation
scheduling. InESTC.
Smith, D. E. 2003. The case for durative actions: A com-
mentary on PDDL2.1.JAIR20.
van Baalen, J. 1992. Automated design of specialized rep-
resentations.Artificial Intelligence54(1–2).

